Optimization and Deep Learning Modeling of the Yield and Properties of Baobab-Derived Biodiesel Catalyzed by Waste Banana Bunch Stalk Biochar

香蕉束废弃物生物炭催化猴面包树生物柴油产量和性能的优化及深度学习建模

阅读:8
作者:Collins Chimezie Elendu, Chang Liu, Rao Danish Aleem, Yaqi Shan, Changqing Cao, Naveed Ramzan, Pei-Gao Duan

Abstract

The integration of optimization techniques and deep learning models, which offer a promising avenue for improving the efficiency and sustainability of biodiesel production processes from baobab seed oil (BSO), is rare. This study utilized a multi-input-multioutput (MIMO) deep learning technique and the most recent central composite design (CCD) optimization tool to model and optimize the yield and properties of biodiesel produced from BSO. First, the baobab seed oil was extracted using a solvent extraction method. BSO was subsequently analyzed and converted to biodiesel by reacting CH3OH catalyzed by waste banana bunch stalk biochar activated by KOH. Multiobjective optimization and prediction of the biodiesel yield (Y) and several key fuel properties, including the cetane number (CN), kinematic viscosity (VS), and purity (P), were achieved. With better correlation coefficients of 0.9709, 0.9464, and 0.9714 for response training, response testing, and response validation, respectively, and a root-mean-square error of 0.00755, the MIMO model on the logsig transfer function accurately predicted the biodiesel yield and properties more than did the MISO and response surface methodology models. The optimum Y (96 wt %), CN (48), VS (3.3 mm2/s), and P (98.3%) were concurrently accomplished at a reaction temperature of 56 °C, a reaction time of 115 min, a CH3OH/BSO molar ratio of 15:1, a catalyst dosage of 6 wt %, and a stirring speed of 400 rpm with 98% optimal validation accuracy. CCD sensitivity analysis revealed that the CH3OH/BSO ratio was the most sensitive (50.9%) input predictor among the other input variables studied.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。