Soil Biodegradation Resistance of Cotton Fiber Doped with Interior and Exterior Silver Nanoparticles

内外掺杂银纳米粒子棉纤维的抗土壤生物降解性能

阅读:5
作者:Sunghyun Nam, Haile Tewolde, Zhongqi He, Kanniah Rajasekaran, Jeffrey W Cary, Gregory Thyssen, Hailin Zhang, Christine Sickler, Md Muhaiminul Islam

Abstract

Engineering fibers with nanomaterials is an effective way to modify their properties and responses to external stimuli. In this study, we doped cotton fibers with silver nanoparticles, both on the surface (126 ± 17 nm) and throughout the fiber cross section (18 ± 4 nm), and examined the resistance to soil biodegradation. A reagent-free one-pot treatment of a raw cotton fabric, where noncellulosic constituents of the raw cotton fiber and starch sizing served as reducing agents, produced silver nanoparticles with a total concentration of 11 g/kg. In a soil burial study spanning 16 weeks, untreated cotton underwent a sequential degradation process-fibrillation, fractionation, and merging-corresponding to the length of the soil burial period, whereas treated cotton did not exhibit significant degradation. The remarkable biodegradation resistance of the treated cotton was attributed to the antimicrobial properties of silver nanoparticles, as demonstrated through a test involving the soil-borne fungus Aspergillus flavus. The nonlinear loss behavior of silver from the treated cotton suggests that nanoparticle depletion in the soil depends on their location, with interior nanoparticles proving durable against environmental exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。