SETDB1 prevents TET2-dependent activation of IAP retroelements in naïve embryonic stem cells

SETDB1 可阻止幼稚胚胎干细胞中 TET2 依赖的 IAP 逆转录因子的激活

阅读:5
作者:Özgen Deniz, Lorenzo de la Rica, Kevin C L Cheng, Dominik Spensberger, Miguel R Branco

Background

Endogenous retroviruses (ERVs), which are responsible for 10% of spontaneous mouse mutations, are kept under control via several epigenetic mechanisms. The H3K9 histone methyltransferase SETDB1 is essential for ERV repression in embryonic stem cells (ESCs), with DNA methylation also playing an important role. It has been suggested that SETDB1 protects ERVs from TET-dependent DNA demethylation, but the relevance of this mechanism for ERV expression remains unclear. Moreover, previous studies have been performed in primed ESCs, which are not epigenetically or transcriptionally representative of preimplantation embryos.

Conclusions

Our results demonstrate a novel and unexpected role for SETDB1 in protecting IAPs from TET2-dependent histone arginine demethylation.

Results

We use naïve ESCs to investigate the role of SETDB1 in ERV regulation and its relationship with TET-mediated DNA demethylation. Naïve ESCs show an increased dependency on SETDB1 for ERV silencing when compared to primed ESCs, including at the highly mutagenic intracisternal A particles (IAPs). We find that in the absence of SETDB1, TET2 activates IAP elements in a catalytic-dependent manner. Surprisingly, TET2 does not drive changes in DNA methylation levels at IAPs, suggesting that it regulates these retrotransposons indirectly. Instead, SETDB1 depletion leads to a TET2-dependent loss of H4R3me2s, which is indispensable for IAP silencing during epigenetic reprogramming. Conclusions: Our results demonstrate a novel and unexpected role for SETDB1 in protecting IAPs from TET2-dependent histone arginine demethylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。