Single Calcium Channel Nanodomains Drive Presynaptic Calcium Entry at Lamprey Reticulospinal Presynaptic Terminals

单钙通道纳米域驱动突触前钙离子进入七鳃鳗网状脊髓突触前末端

阅读:5
作者:Shankar Ramachandran, Shelagh Rodgriguez, Mariana Potcoava, Simon Alford

Abstract

Efficient and reliable neurotransmission requires precise coupling between action potentials (APs), Ca2+ entry and neurotransmitter release. However, Ca2+ requirements for release, including the number of channels required, their subtypes, and their location with respect to primed vesicles, remains to be precisely defined for central synapses. Indeed, Ca2+ entry may occur through small numbers or even single open Ca2+ channels, but these questions remain largely unexplored in simple active zone (AZ) synapses common in the nervous system, and key to addressing Ca2+ channel and synaptic dysfunction underlying numerous neurologic and neuropsychiatric disorders. Here, we present single channel analysis of evoked AZ Ca2+ entry, using cell-attached patch clamp and lattice light-sheet microscopy (LLSM), resolving small channel numbers evoking Ca2+ entry following depolarization, at single AZs in individual central lamprey reticulospinal presynaptic terminals from male and females. We show a small pool (mean of 23) of Ca2+ channels at each terminal, comprising N-(CaV2.2), P/Q-(CaV2.1), and R-(CaV2.3) subtypes, available to gate neurotransmitter release. Significantly, of this pool only one to seven channels (mean of 4) open on depolarization. High temporal fidelity lattice light-sheet imaging reveals AP-evoked Ca2+ transients exhibiting quantal amplitude variations of 0-6 event sizes between individual APs and stochastic variation of precise locations of Ca2+ entry within the AZ. Further, total Ca2+ channel numbers at each AZ correlate to the number of presynaptic primed synaptic vesicles. Dispersion of channel openings across the AZ and the similar number of primed vesicles and channels indicate that Ca2+ entry via as few as one channel may trigger neurotransmitter release.SIGNIFICANCE STATEMENT Presynaptic Ca2+ entry through voltage-gated calcium channels (VGCCs) causes neurotransmitter release. To understand neurotransmission, its modulation, and plasticity, we must quantify Ca2+ entry and its relationship to vesicle fusion. This requires direct recordings from active zones (AZs), previously possible only at calyceal terminals containing many AZs, where few channels open following action potentials (APs; Sheng et al., 2012), and even single channel openings may trigger release (Stanley, 1991, 1993). However, recording from more conventional terminals with single AZs commonly found centrally has thus far been impossible. We addressed this by cell-attached recordings from acutely dissociated single lamprey giant axon AZs, and by lattice light sheet microscopy of presynaptic Ca2+ entry. We demonstrate nanodomains of presynaptic VGCCs coupling with primed vesicles with 1:1 stoichiometry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。