Bisphenol A induces cell cycle arrest in primary and prostate cancer cells through EGFR/ERK/p53 signaling pathway activation

双酚 A 通过激活 EGFR/ERK/p53 信号通路诱导原发性癌细胞和前列腺癌细胞的细胞周期停滞

阅读:6
作者:Antonio Bilancio #, Paola Bontempo #, Marzia Di Donato #, Mariarosaria Conte, Pia Giovannelli, Lucia Altucci, Antimo Migliaccio, Gabriella Castoria

Abstract

Bisphenol A (BPA) belongs to the class of chemicals known as endocrine disruptors and has been also involved in the pathogenesis and progression of endocrine related cancer such as breast and prostate cancers. Here, we have investigated the effect of BPA in human prostate cancer LNCaP cells and in human non-transformed epithelial prostate EPN cells. Our data showed that BPA induces the down regulation of cyclin D1 expression and the upregulation of the cell cycle inhibitors p21 and p27, leading to cell cycle arrest. Interestingly, we found that the BPA anti-proliferative response depends on a strong and rapid activation of epidermal growth factor receptor (EGFR), which stimulates ERK-dependent pathway. This, in turn, induces expression of p53 and its phosphorylation on residue Ser15, which is responsible for cell cycle arrest. EGFR activation occurs upon a cross talk with androgen (AR) and estradiol receptor-β (ERβ) which are known to bind BPA. Altogether, these findings show a novel signaling pathway in which EGFR activation plays a key role on BPA-induced cell cycle inhibition through a pathway involving AR and ERβ/EGFR complexes, ERK and p53. Our results provide new insights for understanding the molecular mechanisms in human prostate cancer. On the other, they could allow the development of new compounds that may be used to overcome human prostate cancer resistance to endocrine therapy in promising target therapeutic approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。