A mutual information approach to automate identification of neuronal clusters in Drosophila brain images

一种自动识别果蝇大脑图像中神经元簇的互信息方法

阅读:6
作者:Nicolas Y Masse, Sebastian Cachero, Aaron D Ostrovsky, Gregory S X E Jefferis

Abstract

Mapping neural circuits can be accomplished by labeling a small number of neural structures per brain, and then combining these structures across multiple brains. This sparse labeling method has been particularly effective in Drosophila melanogaster, where clonally related clusters of neurons derived from the same neural stem cell (neuroblast clones) are functionally related and morphologically highly stereotyped across animals. However identifying these neuroblast clones (approximately 180 per central brain hemisphere) manually remains challenging and time consuming. Here, we take advantage of the stereotyped nature of neural circuits in Drosophila to identify clones automatically, requiring manual annotation of only an initial, smaller set of images. Our procedure depends on registration of all images to a common template in conjunction with an image processing pipeline that accentuates and segments neural projections and cell bodies. We then measure how much information the presence of a cell body or projection at a particular location provides about the presence of each clone. This allows us to select a highly informative set of neuronal features as a template that can be used to detect the presence of clones in novel images. The approach is not limited to a specific labeling strategy and can be used to identify partial (e.g., individual neurons) as well as complete matches. Furthermore this approach could be generalized to studies of neural circuits in other organisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。