Serum Amyloid A-Mediated Inflammasome Activation of Microglial Cells in Cerebral Ischemia

脑缺血时血清淀粉样蛋白A介导小胶质细胞炎症小体激活

阅读:6
作者:Jin Yu, Hong Zhu, Saeid Taheri, William Mondy, Leonardo Bonilha, Gayenell S Magwood, Daniel Lackland, Robert J Adams, Mark S Kindy

Abstract

Serum amyloid A (SAA) proteins are acute-phase reactant associated with high-density lipoprotein (HDL) particles and increase in the plasma 1000-fold during inflammation. Recent studies have implicated SAAs in innate immunity and various disorders; however, the precise mechanism eludes us. Previous studies have shown SAAs are elevated following stroke and cerebral ischemia, and our studies demonstrated that SAA-deficient mice reduce inflammation and infarct volumes in a mouse stroke model. Our studies demonstrate that SAA increases the cytokine interleukin-1β (IL-1β), which is mediated by Nod-like receptor protein 3 (NLRP3) inflammasome, cathepsin B, and caspase-1 and may play a role in the pathogenesis of neurological disorders. SAA induced the expression of NLRP3, which mediated IL-1β induction in murine BV-2 cells and both sex primary mouse microglial cells, in a dose- and time-dependent fashion. Inhibition or KO of the NLRP3 in microglia prevented the increase in IL-1β. N-acetyl-l-cysteine and mito-TEMPO blocked the induction of IL-1β by inhibiting ROS with SAA treatment. In addition, inhibition of cathepsin B with different drugs or microglia from CatB-deficient mice attenuated inflammasome activation. Our studies suggest that the impact of SAA on inflammasome stimulation is mediated in part by the receptor for advanced glycation endproducts and Toll-like receptor proteins 2 and 4. SAA induced inflammatory cytokines and an M1 phenotype in the microglial cells while downregulating anti-inflammation M2 phenotype. These studies suggest that brain injury to can elicit a systemic inflammatory response mediated through SAA that contributes to the pathological outcomes.SIGNIFICANCE STATEMENT In the present study, serum amyloid A can induce that activation of the inflammasome in microglial cells and give rise to IL-1β release, which can further inflammation in the brain following neurological diseases. The also presents a novel target for therapeutic approaches in stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。