Genetic and Pharmacological Inhibition of Autophagy increases the Monoubiquitination of Non-Photosynthetic Phospho enol pyruvate Carboxylase

基因和药理学抑制自噬可增加非光合磷酸烯醇丙酮酸羧化酶的单泛素化

阅读:5
作者:Guillermo Baena, Ana B Feria, Luis Hernández-Huertas, Jacinto Gandullo, Cristina Echevarría, José A Monreal, Sofía García-Mauriño

Abstract

Phosphoenolpyruvate carboxylase (PEPC) is an enzyme with key roles in carbon and nitrogen metabolisms. The mechanisms that control enzyme stability and turnover are not well known. This paper investigates the degradation of PEPC via selective autophagy, including the role of the monoubiquitination of the enzyme in this process. In Arabidopsis, the genetic inhibition of autophagy increases the amount of monoubiquitinated PEPC in the atg2, atg5, and atg18a lines. The same is observed in nbr1, which is deficient in a protein that recruits monoubiquitinated substrates for selective autophagy. In cultured tobacco cells, the chemical inhibition of the degradation of autophagic substrates increases the quantity of PEPC proteins. When the formation of the autophagosome is blocked with 3-methyladenine (3-MA), monoubiquitinated PEPC accumulates as a result. Finally, pull-down experiments with a truncated version of NBR1 demonstrate the recovery of intact and/or fragmented PEPC in Arabidopsis leaves and roots, as well as cultured tobacco cells. Taken together, the results show that a fraction of PEPC is cleaved via selective autophagy and that the monoubiquitination of the enzyme has a role in its recruitment towards this pathway. Although autophagy seems to be a minor pathway, the results presented here increase the knowledge about the role of monoubiquitination and the regulation of PEPC degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。