Background
The storage of platelets affects platelet integrity and functionality, a process named platelet storage lesion (PSL). Reduced adenosine diphosphate (ADP)-induced platelet aggregation is a typical manifestation of PSL. However, the role of ADP receptors in this context has not been evaluated yet. The
Discussion
The function of the P2Y12 receptor is maintained during storage of apheresis-derived platelet concentrates. However, the impairment of P2X1 and especially of P2Y1 receptor function indicated by decreased receptor-mediated calcium flux is an important mechanism contributing to reduced ADP responsiveness of stored platelets.
Material and methods
Platelets were obtained from venous whole blood and from apheresis-derived platelet concentrates stored for 0, 2 and 5 days. Purinergic receptor expression was measured by flow cytometry and western blot analysis. Receptor function was determined by calcium-induced fluorescence (P2Y1 and P2X1) or by flow cytometric measurement of the platelet reactivity index (P2Y12).
Methods
Platelets were obtained from venous whole blood and from apheresis-derived platelet concentrates stored for 0, 2 and 5 days. Purinergic receptor expression was measured by flow cytometry and western blot analysis. Receptor function was determined by calcium-induced fluorescence (P2Y1 and P2X1) or by flow cytometric measurement of the platelet reactivity index (P2Y12).
Results
The basal surface expression and total content of purinergic receptors remained unchanged throughout storage. After an initial reduction during apheresis, P2X1-mediated calcium flux was maintained, whereas the P2Y1-mediated increase of calcium flux gradually decreased during the course of storage. In contrast, the platelet reactivity index was comparable in freshly obtained and stored platelets.
