Protectin DX Relieve Hyperoxia-induced Lung Injury by Protecting Pulmonary Endothelial Glycocalyx

Protectin DX通过保护肺内皮糖萼减轻高氧引起的肺损伤

阅读:5
作者:Zhongjie Liang, Huilin Yue, Congcong Xu, Qian Wang, Shengwei Jin

Background

Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants with limited treatments and poor prognosis. Damaged endothelial glycocalyx leads to vascular permeability, lung edema and inflammation. However, whether hyperoxia increases neonatal pulmonary microvascular permeability by degrading the endothelial glycocalyx remains unknown.

Conclusion

In summary, our findings indicate that PDX treatment relieves hyperoxia-induced alveolar simplification, vascular leakage and lung inflammation by attenuating pulmonary endothelial glycocalyx injury via the SIRT1/NF-κB/ HPA pathway.

Methods

Newborn mice were maintained in 60-70% O2 for 7 days. Protectin DX (PDX), an endogenous lipid mediator, was injected intraperitoneally on postnatal d 0, 2, 4 and 6. Lung samples and bronchoalveolar lavage fluid were taken at the end of the study. Primary human umbilical vein endothelial cells (HUVECs) were cultured in 80%O2.

Results

Hyperoxia exposure for 7 days led to neonatal mice alveolar simplification with less radial alveolar count (RAC), mean linear intercept (MLI) and mean alveolar diameter (MAD) compared to the control group. Hyperoxia exposure increased lung vascular permeability with more fluid and proteins and inflammatory factors, including TNF-α and IL-1β, in bronchoalveolar lavage fluid while reducing the heparan sulfate (HS), the most abundant component of the endothelial glycocalyx, in the pulmonary endothelial cells. PDX relieve these changes. PDX attenuated hyperoxia-induced high expression of heparanase (HPA), the endoglycosidase that shed endothelial glycocalyx, p-P65, P65, and low expression of SIRT1. BOC-2 and EX527 abolished the affection of PDX both in vivo and intro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。