Human stanniocalcin-1 suppresses angiotensin II-induced superoxide generation in cardiomyocytes through UCP3-mediated anti-oxidant pathway

人斯钙素-1通过UCP3介导的抗氧化途径抑制血管紧张素Ⅱ诱导的心肌细胞超氧化物生成

阅读:6
作者:Dajun Liu, Luping Huang, Yanlin Wang, Wei Wang, Xander H T Wehrens, Tatiana Belousova, Maen Abdelrahim, Gabriel DiMattia, David Sheikh-Hamad

Conclusion

STC1 activates a novel anti-oxidant pathway in cardiac myocytes through induction of UCP3, and may play an important role in suppressing ROS in the heart under normal physiologic conditions and ameliorate the deleterious effects of Ang II-mediated cardiac injury. Importantly, our data point to a critical role for the mitochondria in regulating ROS generation in response to Ang II.

Objective

We examined the hypothesis that STC1 uncouples mitochondrial oxidative phosphorylation--to suppress superoxide generation and modulate neurohormonal effects on cardiomyocytes.

Results

Compared to WT mouse heart, STC1 Tg heart displays: 2-fold higher uncoupling protein 3 (UCP3) levels, but no effect on UCP2 protein; 40% lower ATP levels; but similar activities of respiratory chain complexes I-IV. In cultured adult rat and freshly-isolated mouse cardiomyocytes, rSTC1 induces UCP3, but not UCP2. Treatment of cardiomyocytes with STC1 decreases mitochondrial membrane potential and suppresses baseline and angiotensin II (Ang II)-induced superoxide generation. Furthermore, baseline superoxide generation is higher in freshly-isolated adult UCP3(-/-) mouse cardiomyocytes compared to WT, suggesting an important role for UCP3 in regulating cardiomyocyte ROS under physiologic conditions. Treatment of UCP3(-/-) cardiomyocytes with rSTC1 failed to suppress superoxide generation, suggesting that the effects of STC1 on superoxide generation in cardiomyocytes are UCP3-dependent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。