Improved efficiency and robustness in qPCR and multiplex end-point PCR by twisted intercalating nucleic acid modified primers

通过扭曲插入核酸修饰引物提高 qPCR 和多重终点 PCR 的效率和稳定性

阅读:7
作者:Uffe Vest Schneider, Nikolaj Dam Mikkelsen, Anja Lindqvist, Limei Meng Okkels, Nina Jøhnk, Gorm Lisby

Abstract

We introduce quantitative polymerase chain reaction (qPCR) primers and multiplex end-point PCR primers modified by the addition of a single ortho-Twisted Intercalating Nucleic Acid (o-TINA) molecule at the 5'-end. In qPCR, the 5'-o-TINA modified primers allow for a qPCR efficiency of 100% at significantly stressed reaction conditions, increasing the robustness of qPCR assays compared to unmodified primers. In samples spiked with genomic DNA, 5'-o-TINA modified primers improve the robustness by increased sensitivity and specificity compared to unmodified DNA primers. In unspiked samples, replacement of unmodified DNA primers with 5'-o-TINA modified primers permits an increased qPCR stringency. Compared to unmodified DNA primers, this allows for a qPCR efficiency of 100% at lowered primer concentrations and at increased annealing temperatures with unaltered cross-reactivity for primers with single nucleobase mismatches. In a previously published octaplex end-point PCR targeting diarrheagenic Escherichia coli, application of 5'-o-TINA modified primers allows for a further reduction (>45% or approximately one hour) in overall PCR program length, while sustaining the amplification and analytical sensitivity for all targets in crude bacterial lysates. For all crude bacterial lysates, 5'-o-TINA modified primers permit a substantial increase in PCR stringency in terms of lower primer concentrations and higher annealing temperatures for all eight targets. Additionally, crude bacterial lysates spiked with human genomic DNA show lesser formation of non-target amplicons implying increased robustness. Thus, 5'-o-TINA modified primers are advantageous in PCR assays, where one or more primer pairs are required to perform at stressed reaction conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。