Open chromatin interaction maps reveal functional regulatory elements and chromatin architecture variations during wheat evolution

开放染色质相互作用图揭示了小麦进化过程中的功能调控元件和染色质结构变化

阅读:5
作者:Jingya Yuan, Haojie Sun, Yijin Wang, Lulu Li, Shiting Chen, Wu Jiao, Guanghong Jia, Longfei Wang, Junrong Mao, Zhongfu Ni, Xiue Wang, Qingxin Song

Background

Bread wheat (Triticum aestivum) is an allohexaploid that is generated by two subsequent allopolyploidization events. The large genome size (16 Gb) and polyploid complexity impede our understanding of how regulatory elements and their interactions shape chromatin structure and gene expression in wheat. The open chromatin enrichment and network Hi-C (OCEAN-C) is a powerful antibody-independent method to detect chromatin interactions between open chromatin regions throughout the genome.

Conclusions

Our results reveal open chromatin interactions in different wheat species, which provide new insights into the role of open chromatin interactions in gene expression during the evolution of polyploid wheat.

Results

Here we generate open chromatin interaction maps for hexaploid wheat and its tetraploid and diploid relatives using OCEAN-C. The anchors of chromatin loops show high chromatin accessibility and are concomitant with several active histone modifications, with 67% of them interacting with multiple loci. Binding motifs of various transcription factors are significantly enriched in the hubs of open chromatin interactions (HOCIs). The genes linked by HOCIs represent higher expression level and lower coefficient expression variance than the genes linked by other loops, which suggests HOCIs may coordinate co-expression of linked genes. Thousands of interchromosomal loops are identified, while limited interchromosomal loops (0.4%) are identified between homoeologous genes in hexaploid wheat. Moreover, we find structure variations contribute to chromatin interaction divergence of homoeologs and chromatin topology changes between different wheat species. The genes with discrepant chromatin interactions show expression alteration in hexaploid wheat compared with its tetraploid and diploid relatives. Conclusions: Our results reveal open chromatin interactions in different wheat species, which provide new insights into the role of open chromatin interactions in gene expression during the evolution of polyploid wheat.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。