Long-Lasting, Pathway-Specific Impairment of a Novel Form of Spike-Timing-Dependent Long-Term Depression by Neuropathic Pain in the Anterior Cingulate Cortex

前扣带皮层神经性疼痛导致一种新型的脉冲时间依赖性长期抑郁症的长期、通路特异性损伤

阅读:5
作者:Norbert Hogrefe, Sigrid M Blom, Kristina Valentinova, Niels R Ntamati, Lotte J E Jonker, Natalie E Nevian, Thomas Nevian

Abstract

Malfunctioning synaptic plasticity is one of the major mechanisms contributing to the development of chronic pain. We studied spike-timing dependent depression (tLTD) in the anterior cingulate cortex (ACC) of male mice, a brain region involved in processing emotional aspects of pain. tLTD onto layer 5 pyramidal neurons depended on postsynaptic calcium-influx through GluN2B-containing NMDARs and retrograde signaling via nitric oxide to reduce presynaptic release probability. After chronic constriction injury of the sciatic nerve, a model for neuropathic pain, tLTD was rapidly impaired; and this phenotype persisted even beyond the time of recovery from mechanical sensitization. Exclusion of GluN2B-containing NMDARs from the postsynaptic site specifically at projections from the anterior thalamus to the ACC caused the tLTD phenotype, whereas signaling downstream of nitric oxide synthesis remained intact. Thus, transient neuropathic pain can leave a permanent trace manifested in the disturbance of synaptic plasticity in a specific afferent pathway to the cortex.SIGNIFICANCE STATEMENT Synaptic plasticity is one of the main mechanisms that contributes to the development of chronic pain. Most studies have focused on potentiation of excitatory synaptic transmission, but very little is known about the reduction in synaptic strength. We have focused on the ACC, a brain region associated with the processing of emotional and affective components of pain. We studied spike-timing dependent LTD, which is a biologically plausible form of synaptic plasticity, that depends on the relative timing of presynaptic and postsynaptic activity. We found a long-lasting and pathway-specific suppression of the induction mechanism for spike-timing dependent LTD from the anterior thalamus to the ACC, suggesting that this pathology might be involved in altered emotional processing in pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。