Integrated analysis of RNA methylation regulators crosstalk and immune infiltration for predictive and personalized therapy of diabetic nephropathy

RNA甲基化调节剂串扰和免疫浸润的综合分析用于糖尿病肾病的预测性和个性化治疗

阅读:7
作者:Jia Li, Dongwei Liu, Jingjing Ren, Guangpu Li, Zihao Zhao, Huanhuan Zhao, Qianqian Yan, Jiayu Duan, Zhangsuo Liu

Background

RNA methylation is a widely known post-transcriptional regulation which exists in many cancer and immune system diseases. However, the potential role and crosstalk of five types RNA methylation regulators in diabetic nephropathy (DN) and immune microenvironment remain unclear.

Conclusion

Our study reveals that RNA methylation regulators and immune infiltration regulation play critical roles in the pathogenesis of DN. The bioinformatic analyses combine with verification in vitro could provide robust evidence for identification of predictive RNA methylation regulators in DN.

Methods

The mRNA expression of 37 RNA modification regulators and RNA modification regulators related genes were identified in 112 samples from 5 Gene Expression Omnibus datasets. Nonnegative Matrix Factorization clustering method was performed to determine RNA modification patterns. The ssGSEA algorithms and the expression of human leukocyte antigen were employed to assess the immune microenvironment characteristics. Risk model based on differentially expression genes responsible for the modification regulators was constructed to evaluate its predictive capability in DN patients. Furthermore, the

Results

We found 24 RNA methylation regulators were significant differently expressed in glomeruli in DN group compared with control group. Four methylation-related genes and six RNA regulators were introduced into riskScore model using univariate Logistic regression and integrated LASSO regression, which could precisely distinguish the DN and healthy individuals. Group with high-risk score was associated with high immune infiltration. Three distinct RNA modification patterns were identified, which has significant differences in immune microenvironment, biological pathway and eGFR. Validation analyses showed the METTL3, ADAR1, DNMT1 were upregulated whereas YTHDC1 was downregulated in DN podocyte cell lines comparing with cells cultured by the normal glucose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。