IL-6-Driven Autocrine Lactate Promotes Immune Escape of Uveal Melanoma

IL-6 驱动的自分泌乳酸促进葡萄膜黑色素瘤的免疫逃逸

阅读:5
作者:Chaoju Gong, Meiling Yang, Huirong Long, Xia Liu, Qing Xu, Lei Qiao, Haibei Dong, Yalu Liu, Suyan Li

Conclusions

Our data reveal a novel mechanism by which UM cells acquire an immune-escape phenotype by metabolic reprogramming and reinforce the importance of the link between inflammation and immune escape.

Methods

Transcriptome profiles were revealed by RNA-seq analysis. TALL-104 and NK-92MI-mediated cell killing assays were used to examine the immune resistance of UM cells. The glycolysis rate was measured by extracellular acidification analysis. Protein stability was evaluated by CHX-chase assay. Immunofluorescence histochemistry was performed to detect protein levels in clinical UM specimens.

Purpose

Early metastasis, in which immune escape plays a crucial role, is the leading cause of death in patients with uveal melanoma (UM); however, the molecular mechanism underlying UM immune escape remains unclear, which greatly limits the clinical application of immunotherapy for metastatic UM.

Results

Continuous exposure to IL-6 induced the expression of both PD-L1 and HLA-E in UM cells, which promoted UM immune escape. Transcriptome analysis revealed that the expression of most metabolic enzymes in the glycolysis pathway, especially the rate-limiting enzymes, PFKP and PKM, was upregulated, whereas enzymes involved in the acetyl-CoA synthesis pathway were downregulated after exposure to IL-6. Blocking the glycolytic pathway and lactate production by knocking down PKM and LDHA decreased PD-L1 and HLA-E protein, but not mRNA, levels in UM cells treated with IL-6. Notably, lactate secreted by IL-6-treated UM cells was crucial in influencing PD-L1 and HLA-E stability via the GPR81-cAMP-PKA signaling pathway. Conclusions: Our data reveal a novel mechanism by which UM cells acquire an immune-escape phenotype by metabolic reprogramming and reinforce the importance of the link between inflammation and immune escape.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。