Arsenic suppresses GDF1 expression via ROS-dependent downregulation of specificity protein 1

砷通过 ROS 依赖性特异性蛋白 1 下调来抑制 GDF1 表达

阅读:8
作者:Xiaobo Gao, Chen Zhang, Panpan Zheng, Qinghua Dan, Haiyan Luo, Xu Ma, Cailing Lu

Abstract

Inorganic arsenic, an environmental contaminant, has adverse health outcomes. Our previous studies showed that arsenic causes abnormal cardiac development in zebrafish embryos by downregulating Dvr1/GDF1 expression and that folic acid protects against these effects. However, the mechanism by which arsenic represses Dvr1/GDF1 expression remains unknown. Herein, we demonstrate that specificity protein 1 (Sp1) acts as a transcriptional activator of GDF1. Arsenic treatment downregulated Sp1 at both the mRNA and protein level and its downstream targets GDF1 and SIRT1. Chromatin immunoprecipitation analysis showed that the occupancy of Sp1 on the GDF1 or SIRT1 promoter was significantly reduced in response to arsenite. Further investigation showed that Sp1 overexpression inhibited the arsenic-mediated decrease in GDF1 and SIRT1, while Sp1 knockdown had the opposite effect. We found that expression of the oxidative adaptor p66shc was inversely related to that of SIRT1 and that the binding of SIRT1 to the p66shc promoter was sharply attenuated by arsenite treatment. SIRT1 overexpression attenuated p66shc expression but enhanced GDF1 protein expression, while SIRT1 depletion exerted the opposite effect. Both the antioxidants N-acetylcysteine and folic acid reversed the arsenic-mediated repression of Sp1, GDF1 and SIRT1. Moreover, wild-type p66shc overexpression enhanced the arsenic-mediated repression of Sp1, GDF1 and SIRT1, which was accompanied by an increase in intracellular reactive oxygen species (ROS) levels, while both overexpression of a dominant negative p66shcSer36Ala mutant and deficiency in p66shc reversed these effects. Taken together, our results revealed that arsenic suppresses GDF1 expression via the ROS-dependent downregulation of the Sp1/SIRT1 axis, which forms a negative feedback loop with p66shc to regulate oxidative stress. Our findings reveal a novel molecular mechanism underlying arsenic toxicity and provide new insight into the protective effect of folic acid in arsenic-mediated toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。