Sediment-associated microbial community profiling: sample pre-processing through sequential membrane filtration for 16S rRNA amplicon sequencing

沉积物相关微生物群落分析:通过连续膜过滤对样品进行预处理以进行 16S rRNA 扩增子测序

阅读:7
作者:Joeselle M Serrana, Kozo Watanabe

Background

Sequential membrane filtration as a pre-processing step for capturing sediment-associated microorganisms could provide good quality and integrity DNA that can be preserved and kept at ambient temperatures before community profiling through culture-independent molecular techniques. However, the effects of sample pre-processing via filtration on DNA-based profiling of sediment-associated microbial community diversity and composition are poorly understood. Specifically, the influences of pre-processing on the quality and quantity of extracted DNA, high-throughput DNA sequencing reads, and detected microbial taxa need further evaluation.

Conclusions

Our observations highlight the feasibility of pre-processing sediment samples for community analysis and the need to further assess sampling strategies to help conceptualize appropriate study designs for sediment-associated microbial community profiling.

Results

We assessed the impact of pre-processing freshwater sediment samples by sequential membrane filtration (from 10, 5 to 0.22 μm pore size) for 16S rRNA-based community profiling of sediment-associated microorganisms. Specifically, we examined if there would be method-driven differences between non- and pre-processed sediment samples regarding the quality and quantity of extracted DNA, PCR amplicon, resulting high-throughput sequencing reads, microbial diversity, and community composition. We found no significant difference in the qualities and quantities of extracted DNA and PCR amplicons, and the read abundance after bioinformatics processing (i.e., denoising and chimeric-read filtering steps) between the two methods. Although the non- and pre-processed sediment samples had more unique than shared amplicon sequence variants (ASVs), we report that their shared ASVs accounted for 74% of both methods' absolute read abundance. More so, at the genus level, the final collection filter identified most of the genera (95% of the reads) captured from the non-processed samples, with a total of 51 false-negative (2%) and 59 false-positive genera (3%). We demonstrate that while there were differences in shared and unique taxa, both methods revealed comparable microbial diversity and community composition. Conclusions: Our observations highlight the feasibility of pre-processing sediment samples for community analysis and the need to further assess sampling strategies to help conceptualize appropriate study designs for sediment-associated microbial community profiling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。