Polystyrene microplastics arrest skeletal growth in puberty through accelerating osteoblast senescence

聚苯乙烯微塑料通过加速成骨细胞衰老来阻止青春期骨骼生长

阅读:4
作者:Chun Pan, Yin Wu, Sihan Hu, Ke Li, Xiangyu Liu, Yu Shi, Wenzheng Lin, Xinglong Wang, Yujie Shi, Zhuobin Xu, Huihui Wang, Hao Chen

Abstract

Polystyrene microplastics (PS-MPs) have attracted worldwide attention to their massive accumulation in terrestrial and aquatic ecosystems. It has been demonstrated that MPs are easily to accumulate in organs and exert toxic effects. However, their exposure risk to the skeleton remains unknown. In this study, we observed PS-MPs accumulation in both the long bones and axial bones, leading to reduced body length, as well as femur and tibia length. PS-MPs treated mice exhibited redundant skeletal growth and impaired trabecular bone micro-architecture, which is due to the suppressed osteogenic ability as the number of osteoblasts decreased significantly in PS-MPs treated mice. In histological analysis, we observed the accumulation of senescent osteoblasts in the bone trabecula of PS-MPs treated mice, as well as the impaired autophagy with decreased autophagosome and reduced autophagy-related proteins in the senescent osteoblasts. Re-establishing autophagy effectively reversed the senescent phenotype in osteoblasts and ameliorated PS-MPs induced skeletal growth arrest. Hence, our study reveals the detrimental role of PS-MPs in skeletal growth in puberty through accelerating osteoblast senescence, which may be alleviated by reactivating the autophagy. This study provides new evidence of the PS-MPs on health threats and the potential therapeutic targets to reverse it.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。