DPPA5 Supports Pluripotency and Reprogramming by Regulating NANOG Turnover

DPPA5 通过调节 NANOG 周转来支持多能性和重编程

阅读:6
作者:Xu Qian, Jin Koo Kim, Wilbur Tong, Luis G Villa-Diaz, Paul H Krebsbach

Abstract

Although a specific group of transcription factors such as OCT4, SOX2, and NANOG are known to play essential roles in pluripotent stem cell (PSC) self-renewal, pluripotency, and reprogramming, other factors and the key signaling pathways regulating these important properties are not completely understood. Here, we demonstrate that the PSC marker Developmental Pluripotency Associated 5 (DPPA5) plays an important role in human PSC (hPSC) self-renewal and cell reprogramming in feeder-free conditions. Compared to hPSCs grown on mouse embryonic fibroblasts, cells cultured on feeder-free substrates, such as Matrigel, Laminin-511, Vitronectin, or the synthetic polymer poly[2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide], had significantly higher DPPA5 gene expression and protein levels. Overexpression of DPPA5 in hPSCs increased NANOG protein levels via a post-transcriptional mechanism. Coimmunoprecipitation, protein stability assays, and quantitative RT-PCR, demonstrated that DPPA5 directly interacted, stabilized, and enhanced the function of NANOG in hPSCs. Additionally, DPPA5 increased the reprogramming efficiency of human somatic cells to induced pluripotent stem cells (hiPSCs). Our study provides new insight into the function of DPPA5 and NANOG regulation in hPSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。