NS383 Selectively Inhibits Acid-Sensing Ion Channels Containing 1a and 3 Subunits to Reverse Inflammatory and Neuropathic Hyperalgesia in Rats

NS383 选择性抑制含有 1a 和 3 亚基的酸敏感离子通道,以逆转大鼠的炎症和神经性痛觉过敏

阅读:8
作者:Gordon Munro, Jeppe K Christensen, Helle K Erichsen, Tino Dyhring, Joachim Demnitz, Eva Dam, Philip K Ahring

Aims

Here, we investigate the pharmacology of NS383, a novel small molecule inhibitor of acid-sensing ion channels (ASICs).

Conclusions

NS383 is a potent and uniquely selective inhibitor of rat ASICs containing 1a and/or 3 subunits. It is well tolerated and capable of reversing pathological painlike behaviors, presumably via peripheral actions, but possibly also via actions within central pain circuits.

Methods

ASIC inhibition by NS383 was characterized in patch-clamp electrophysiological studies. Analgesic properties were evaluated in four rat behavioral models of pain.

Results

NS383 inhibited H(+)-activated currents recorded from rat homomeric ASIC1a, ASIC3, and heteromeric ASIC1a+3 with IC50 values ranging from 0.61 to 2.2 μM. However, NS383 was completely inactive at homomeric ASIC2a. Heteromeric receptors containing AISC2a, such as ASIC1a+2a and ASIC2a+3, were only partially inhibited, presumably as a result of stoichiometry-dependent binding. NS383 (10-60 mg/kg, i.p.), amiloride (50-200 mg/kg, i.p.), acetaminophen (100-400 mg/kg, i.p.), and morphine (3-10 mg/kg, i.p.) all dose-dependently attenuated nocifensive behaviors in the rat formalin test, reversed pathological inflammatory hyperalgesia in complete Freund's adjuvant-inflamed rats, and reversed mechanical hypersensitivity in the chronic constriction injury model of neuropathic pain. However, in contrast to acetaminophen and morphine, motor function was unaffected by NS383 at doses at least 8-fold greater than those that were effective in pain models, whilst analgesic doses of amiloride were deemed to be toxic. Conclusions: NS383 is a potent and uniquely selective inhibitor of rat ASICs containing 1a and/or 3 subunits. It is well tolerated and capable of reversing pathological painlike behaviors, presumably via peripheral actions, but possibly also via actions within central pain circuits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。