Photoactivated Processes on the Surface of Metal Oxides and Gas Sensitivity to Oxygen

金属氧化物表面的光激活过程和对氧气的气体敏感性

阅读:7
作者:Artem Chizhov, Pavel Kutukov, Artyom Astafiev, Marina Rumyantseva

Abstract

Photoactivation by UV and visible radiation is a promising approach for the development of semiconductor gas sensors with reduced power consumption, high sensitivity, and stability. Although many hopeful results were achieved in this direction, the theoretical basis for the processes responsible for the photoactivated gas sensitivity still needs to be clarified. In this work, we investigated the mechanisms of UV-activated processes on the surface of nanocrystalline ZnO, In2O3, and SnO2 by in situ mass spectrometry and compared the obtained results with the gas sensitivity to oxygen in the dark and at UV irradiation. The results revealed a correlation between the photoactivated oxygen isotopic exchange activity and UV-activated oxygen gas sensitivity of the studied metal oxides. To interpret the data obtained, a model was proposed based on the idea of the generation of additional oxygen vacancies under UV irradiation due to the interaction with photoexcited holes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。