Conclusions/interpretation
The PGE2/EP2R signalling pathway is involved in STZ-induced diabetic retinopathy and could be considered as a potential target for diabetic retinopathy prevention and treatment.
Methods
In a streptozotocin (STZ)-induced rat model of diabetes, rats received intravitreal injection of PGE2, butaprost (a PGE2/EP2R agonist) or AH6809 (an EP2R antagonist). Retinal histology, optical coherence tomography, ultrastructure of the retinal vascular and biochemical markers were assessed.
Results
Intravitreal injection of PGE2 and butaprost significantly accelerated retinal vascular leakage, leucostasis and endothelial cell apoptosis in STZ-induced diabetic rats. This response was ameliorated in diabetic rats pre-treated with AH6809. In addition, pre-treatment of human retinal microvascular endothelial cells with AH6809 attenuated PGE2- and butaprost-induced activation of caspase 1, activation of the complex containing nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing a C-terminal caspase-activation and recruitment domain (ASC), and activation of the EP2R-coupled cAMP/protein kinase A/cAMP response element-binding protein signalling pathway. Conclusions/interpretation: The PGE2/EP2R signalling pathway is involved in STZ-induced diabetic retinopathy and could be considered as a potential target for diabetic retinopathy prevention and treatment.
