Potent direct inhibitors of factor Xa based on the tetrahydroisoquinoline scaffold

基于四氢异喹啉骨架的 Xa 因子强效直接抑制剂

阅读:5
作者:Rami A Al-Horani, Akul Y Mehta, Umesh R Desai

Abstract

Direct inhibition of coagulation factor Xa (FXa) carries significant promise for developing effective and safe anticoagulants. Although a large number of FXa inhibitors have been studied, each can be classified as either possessing a highly flexible or a rigid core scaffold. We reasoned that an intermediate level of flexibility will provide high selectivity for FXa considering that its active site is less constrained in comparison to thrombin and more constrained as compared to trypsin. We studied several core scaffolds including 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid for direct FXa inhibition. Using a genetic algorithm-based docking and scoring approach, a promising candidate 23 was identified, synthesized, and found to inhibit FXa with a K(i) of 28 μM. Optimization of derivative 23 resulted in the design of a potent dicarboxamide 47, which displayed a K(i) of 135 nM. Dicarboxamide 47 displayed at least 1852-fold selectivity for FXa inhibition over other coagulation enzymes and doubled PT and aPTT of human plasma at 17.1 μM and 20.2 μM, respectively, which are comparable to those of clinically relevant agents. Dicarboxamide 47 is expected to serve as an excellent lead for further anticoagulant discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。