AF9 sustains glycolysis in colorectal cancer via H3K9ac-mediated PCK2 and FBP1 transcription

AF9 通过 H3K9ac 介导的 PCK2 和 FBP1 转录维持结直肠癌中的糖酵解

阅读:5
作者:Xuefeng He, Xinyang Zhong, Yi Fang, Zijuan Hu, Zhiyu Chen, Yaxian Wang, Huixia Huang, Senlin Zhao, Dawei Li, Ping Wei

Background

The tumourigenesis of various cancers is influenced by epigenetic deregulation. Among 591 epigenetic regulator factors (ERFs) examined, AF9 showed significant inhibition of malignancy in colorectal cancer (CRC) based on our wound healing assays. However, the precise role of AF9 in CRC remains to be explored.

Conclusions

AF9 is essential for the upregulation of PCK2 and FBP1, and the disruption of the miR-145/AF9 axis may serve as a potential target for the development of CRC therapeutics.

Methods

To investigate the function of AF9 in CRC, we utilised small interfering RNAs (siRNAs) to knock down the expression of 591 ERFs. Subsequently, we performed wound healing assays to evaluate cell proliferation and migration. In vitro and in vivo assays were conducted to elucidate the potential impact of AF9 in CRC. Clinical samples were analysed to assess the association between AF9 expression and CRC prognosis. Additionally, an Azoxymethane-Dextran Sodium Sulfate (AOM/DSS) induced CRC AF9IEC-/- mouse model was employed to confirm the role of AF9 in CRC. To identify the target gene of AF9, RNA-seq and coimmunoprecipitation analyses were performed. Furthermore, bioinformatics prediction was applied to identify potential miRNAs that target AF9.

Results

Among the 591 ERFs examined, AF9 exhibited downregulation in CRC and showed a positive correlation with prolonged survival in CRC patients. In vitro and in vivo assays proved that depletion of AF9 could promote cell proliferation, migration as well as glycolysis. Specifically, knockout of MLLT3 (AF9) in intestinal epithelial cells significantly increased tumour formation induced by AOM/DSS. We also identified miR-145 could target 3'untranslated region of AF9 to suppress AF9 expression. Loss of AF9 led to decreased expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose 1,6-bisphosphatase 1 (FBP1), subsequently promoting glucose consumption and tumourigenesis. Conclusions: AF9 is essential for the upregulation of PCK2 and FBP1, and the disruption of the miR-145/AF9 axis may serve as a potential target for the development of CRC therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。