Assessing the double-edged of extracellular signal-regulated kinase/CCAAT-enhancer-binding protein beta signaling pathway in arsenic-induced skin damage and its potential foodborne interventions

评估细胞外信号调节激酶/CCAAT 增强子结合蛋白 β 信号通路在砷引起的皮肤损伤及其潜在的食源性干预中的双刃剑

阅读:5
作者:Fan Yang, Dexiu Hu, Sufei Du, Liping Wu, Maoyuan Gong, Yuhong Zhang, Xingcan Yang, Yang Yang, Ruobi Chen, Yuyan Xu, Qibing Zeng

Abstract

Arsenic exposure is a major environmental public health challenge worldwide. As typical manifestations for arsenic exposure, the pathogenesis of arsenic-induced skin lesions has not been fully elucidated, as well as the lack of effective control measures. In this study, we first determined the short-term and high-dose arsenic exposure can increase the apoptosis rates, while long-term low-dose arsenic exposure decrease the apoptosis rates. Then, the HaCaT cells with knockdown and overexpression of CCAAT-enhancer-binding protein β (CEBPB) and extracellular signal-regulated kinase (ERK) were constructed. The results demonstrate that knockdown of CEBPB and ERK can reduce NaAsO2 -induced cell apoptosis by inhibiting ERK/CEBPB signaling pathway and vice versa. Further cells were treated with Kaji-Ichigoside F1 (KF1). The results clearly show that KF1 can decrease the arsenic-induced cell apoptosis rates and the expression of ERK/CEBPB signaling pathway-related genes. These results provide evidence that ERK/CEBPB signaling pathway acts as a double-edged sword in arsenic-induced skin damage. Another interesting finding was that KF1 can alleviate arsenic-induced skin cell apoptosis by inhibiting the ERK/CEBPB signaling pathway. This study will contribute to a deeper understanding of the mechanisms of arsenic-induced skin cell apoptosis, and our findings will help to identify a potential food-borne intervention in arsenic detoxification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。