Macroscopic Fluorescence Lifetime Imaging for Monitoring of Drug-Target Engagement

宏观荧光寿命成像用于监测药物-靶标结合

阅读:4
作者:Marien Ochoa #, Alena Rudkouskaya #, Jason T Smith #, Xavier Intes, Margarida Barroso

Abstract

Precision medicine promises to improve therapeutic efficacy while reducing adverse effects, especially in oncology. However, despite great progresses in recent years, precision medicine for cancer treatment is not always part of routine care. Indeed, the ability to specifically tailor therapies to distinct patient profiles requires still significant improvements in targeted therapy development as well as decreases in drug treatment failures. In this regard, preclinical animal research is fundamental to advance our understanding of tumor biology, and diagnostic and therapeutic response. Most importantly, the ability to measure drug-target engagement accurately in live and intact animals is critical in guiding the development and optimization of targeted therapy. However, a major limitation of preclinical molecular imaging modalities is their lack of capability to directly and quantitatively discriminate between drug accumulation and drug-target engagement at the pathological site. Recently, we have developed Macroscopic Fluorescence Lifetime Imaging (MFLI) as a unique feature of optical imaging to quantitate in vivo drug-target engagement. MFLI quantitatively reports on nanoscale interactions via lifetime-sensing of Förster Resonance Energy Transfer (FRET) in live, intact animals. Hence, MFLI FRET acts as a direct reporter of receptor dimerization and target engagement via the measurement of the fraction of labeled-donor entity undergoing binding to its respective receptor. MFLI is expected to greatly impact preclinical imaging and also adjacent fields such as image-guided surgery and drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。