Marine Biodiversity in Juan Fernández and Desventuradas Islands, Chile: Global Endemism Hotspots

智利胡安·费尔南德斯和德斯文图拉达斯群岛的海洋生物多样性:全球特有热点

阅读:7
作者:Alan M Friedlander, Enric Ballesteros, Jennifer E Caselle, Carlos F Gaymer, Alvaro T Palma, Ignacio Petit, Eduardo Varas, Alex Muñoz Wilson, Enric Sala

Abstract

The Juan Fernández and Desventuradas islands are among the few oceanic islands belonging to Chile. They possess a unique mix of tropical, subtropical, and temperate marine species, and although close to continental South America, elements of the biota have greater affinities with the central and south Pacific owing to the Humboldt Current, which creates a strong biogeographic barrier between these islands and the continent. The Juan Fernández Archipelago has ~700 people, with the major industry being the fishery for the endemic lobster, Jasus frontalis. The Desventuradas Islands are uninhabited except for a small Chilean military garrison on San Félix Island. We compared the marine biodiversity of these islands across multiple taxonomic groups. At San Ambrosio Island (SA), in Desventuradas, the laminarian kelp (Eisenia cokeri), which is limited to Desventuradas in Chile, accounted for >50% of the benthic cover at wave exposed areas, while more sheltered sites were dominated by sea urchin barrens. The benthos at Robinson Crusoe Island (RC), in the Juan Fernández Archipelago, comprised a diverse mix of macroalgae and invertebrates, a number of which are endemic to the region. The biomass of commercially targeted fishes was >2 times higher in remote sites around RC compared to sheltered locations closest to port, and overall biomass was 35% higher around SA compared to RC, likely reflecting fishing effects around RC. The number of endemic fish species was extremely high at both islands, with 87.5% of the species surveyed at RC and 72% at SA consisting of regional endemics. Remarkably, endemics accounted for 99% of the numerical abundance of fishes surveyed at RC and 96% at SA, which is the highest assemblage-level endemism known for any individual marine ecosystem on earth. Our results highlight the uniqueness and global significance of these biodiversity hotspots exposed to very different fishing pressures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。