Breed-dependent transcriptional regulation of 5'-untranslated GR (NR3C1) exon 1 mRNA variants in the liver of newborn piglets

新生仔猪肝脏中 5'-非翻译 GR (NR3C1) 外显子 1 mRNA 变体的品种依赖性转录调控

阅读:9
作者:Huafeng Zou, Runsheng Li, Yimin Jia, Xiaojing Yang, Yingdong Ni, Rihua Cong, Paul D Soloway, Ruqian Zhao

Abstract

Glucocorticoids are vital for life and regulate an array of physiological functions by binding to the ubiquitously expressed glucocorticoid receptor (GR, also known as NR3C1). Previous studies demonstrate striking breed differences in plasma cortisol levels in pigs. However, investigation into the breed-dependent GR transcriptional regulation is hampered by lacking porcine GR promoter information. In this study, we sequenced 5.3 kb upstream of the translation start codon of the porcine GR gene, and identified seven alternative 5'-untranslated exons 1-4, 1-5, 1-6, 1-7, 1-8, 1-9,10 and 1-11. Among all these mRNA variants, exons 1-4 and 1-5, as well as the total GR were expressed significantly (P<0.05) higher in the liver of newborn piglets of Large White (LW) compared with Erhualian, a Chinese indigenous breed. Overall level of CpG methylation in the region flanking exons 1-4 and 1-5 did not show breed difference. However, nuclear content of Sp1, p-CREB and GR in the liver was significantly (P<0.05) higher in LW piglets, associated with enhanced binding of p-CREB, and higher level of histone H3 acetylation in 1-4 and 1-5 promoters. In contrast, GR binding to promoters of exons 1-4 and 1-5 was significantly diminished in LW piglets, implicating the presence of negative GREs. These results indicate that the difference in the hepatic expression of GR transcript variants between two breeds of pigs is determined, at least partly, by the disparity in the binding of transcription factors and the enrichment of histone H3 acetylation to the promoters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。