Direct Catalytic Route to Biomass-Derived 2,5-Furandicarboxylic Acid and Its Use as Monomer in a Multicomponent Polymerization

直接催化制备生物质衍生的 2,5-呋喃二甲酸及其作为多组分聚合单体的应用

阅读:4
作者:Oliver R Schade, Patrick-Kurt Dannecker, Kai F Kalz, David Steinbach, Michael A R Meier, Jan-Dierk Grunwaldt

Abstract

Efficient synthesis of valuable platform chemicals from renewable feedstock is a challenging, yet essential strategy for developing technologies that are both economical and sustainable. In the present study, we investigated the synthesis of 2,5-furandicarboxylic acid (FDCA) in a two-step catalytic process starting from sucrose as largely available biomass feedstock. In the first step, 5-(hydroxymethyl)furfural (HMF) was synthesized by hydrolysis and dehydration of sucrose using sulfuric acid in a continuous reactor in 34% yield. In a second step, the resulting reaction solution was directly oxidized to FDCA without further purification over a Au/ZrO2 catalyst with 84% yield (87% selectivity, batch process), corresponding to 29% overall yield with respect to sucrose. This two-step process could afford the production of pure FDCA after the respective extraction/crystallization despite the impure intermediate HMF solution. To demonstrate the direct application of the biomass-derived FDCA as monomer, the isolated product was used for Ugi-multicomponent polymerizations, establishing a new application possibility for FDCA. In the future, this efficient two-step process strategy toward FDCA should be extended to further renewable feedstock.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。