H3.3 contributes to chromatin accessibility and transcription factor binding at promoter-proximal regulatory elements in embryonic stem cells

H3.3 有助于胚胎干细胞中染色质的可及性和启动子近端调控元件处的转录因子结合

阅读:5
作者:Amanuel Tafessu #, Ryan O'Hara #, Sara Martire #, Altair L Dube, Purbita Saha, Vincent U Gant, Laura A Banaszynski

Background

The histone variant H3.3 is enriched at active regulatory elements such as promoters and enhancers in mammalian genomes. These regions are highly accessible, creating an environment that is permissive to transcription factor binding and the recruitment of transcriptional coactivators that establish a unique chromatin post-translational landscape. How H3.3 contributes to the establishment and function of chromatin states at these regions is poorly understood.

Conclusions

H3.3 facilitates DNA accessibility, transcription factor binding, and histone post-translational modification at active promoters. While H3.3 is not required for maintaining transcription in ESCs, it does promote de novo transcription factor binding which may contribute to the dysregulation of cellular differentiation in the absence of H3.3.

Results

We perform genomic analyses of features associated with active promoter chromatin in mouse embryonic stem cells (ESCs) and find evidence of subtle yet widespread promoter dysregulation in the absence of H3.3. Loss of H3.3 results in reduced chromatin accessibility and transcription factor (TF) binding at promoters of expressed genes in ESCs. Likewise, enrichment of the transcriptional coactivator p300 and downstream histone H3 acetylation at lysine 27 (H3K27ac) is reduced at promoters in the absence of H3.3, along with reduced enrichment of the acetyl lysine reader BRD4. Despite the observed chromatin dysregulation, H3.3 KO ESCs maintain transcription from ESC-specific genes. However, upon undirected differentiation, H3.3 KO cells retain footprinting of ESC-specific TF motifs and fail to generate footprints of lineage-specific TF motifs, in line with their diminished capacity to differentiate. Conclusions: H3.3 facilitates DNA accessibility, transcription factor binding, and histone post-translational modification at active promoters. While H3.3 is not required for maintaining transcription in ESCs, it does promote de novo transcription factor binding which may contribute to the dysregulation of cellular differentiation in the absence of H3.3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。