PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF-κB- and HDAC1-mediated expression and activation of uPA

PKD2 和 PKD3 通过调节 NF-κB 和 HDAC1 介导的 uPA 表达和激活来促进前列腺癌细胞侵袭

阅读:11
作者:Zhipeng Zou, Fangyin Zeng, Wanfu Xu, Chunxia Wang, Zhiyong Ke, Q Jane Wang, Fan Deng

Abstract

Although protein kinase D3 (PKD3) has been shown to contribute to prostate cancer cell growth and survival, the role of PKD in prostate cancer cell motility remains unclear. Here, we show that PKD2 and PKD3 promote nuclear factor kappa B (NF-κB) signaling and urokinase-type plasminogen activator (uPA) expression/activation, which are crucial for prostate cancer cell invasion. Silencing of endogenous PKD2 and/or PKD3 markedly decreased prostate cancer cell migration and invasion, reduced uPA and uPA receptor (uPAR) expression and increased plasminogen activator inhibitor-2 (PAI-2) expression. These results were further substantiated by the finding that PKD2 and PKD3 promoted the activity of uPA and matrix metalloproteinase 9 (MMP9). Furthermore, depletion of PKD2 and/or PKD3 decreased the level of binding of the p65 subunit of NF-κB to the promoter of the gene encoding uPA (PLAU), suppressing transcriptional activation of uPA. Endogenous PKD2 and PKD3 interacted with inhibitor of NF-κB (IκB) kinase β (IKKβ); PKD2 mainly regulated the phosphorylated IKK (pIKK)-phosphorylated IκB (pIκB)-IκB degradation cascade, p65 nuclear translocation, and phosphorylation of Ser276 on p65, whereas PKD3 was responsible for the phosphorylation of Ser536 on p65. Conversely, inhibition of uPA transactivation by PKD3 silencing was rescued by constitutive Ser536 p65 phosphorylation, and reduced tumor cell invasion resulting from PKD2 or PKD3 silencing was rescued by ectopic expression of p65. Interestingly, PKD3 interacted with histone deacetylase 1 (HDAC1), suppressing HDAC1 expression and decreasing its binding to the uPA promoter. Moreover, depletion of HDAC1 resulted in recovery of uPA transactivation in PKD3-knockdown cells. Taken together, these data suggest that PKD2 and PKD3 coordinate to promote prostate cancer cell invasion through p65 NF-κB- and HDAC1-mediated expression and activation of uPA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。