Tunable hydrogels for mesenchymal stem cell delivery: Integrin-induced transcriptome alterations and hydrogel optimization for human wound healing

用于间充质干细胞输送的可调节水凝胶:整合素诱导的转录组改变和水凝胶优化用于人类伤口愈合

阅读:7
作者:Alina I Marusina, Alexander A Merleev, Jesus I Luna, Laura Olney, Nathan E Haigh, Daniel Yoon, Chen Guo, Elisa M Ovadia, Michiko Shimoda, Guillaume Luxardi, Sucharita Boddu, Nelvish N Lal, Yoshikazu Takada, Kit S Lam, Ruiwu Liu, R Rivkah Isseroff, Stephanie Le, Jan A Nolta, April M Kloxin, Emanual M

Abstract

Therapeutic applications for mesenchymal stem/stromal cells (MSCs) are growing; however, the successful implementation of these therapies requires the development of appropriate MSC delivery systems. Hydrogels are ideally suited to cultivate MSCs but tuning hydrogel properties to match their specific in vivo applications remains a challenge. Thus, further characterization of how hydrogel-based delivery vehicles broadly influence MSC function and fate will help lead to the next generation of more intelligently designed delivery vehicles. To date, few attempts have been made to comprehensively characterize hydrogel impact on the MSC transcriptome. Herein, we have synthesized cell-degradable hydrogels based on bio-inert poly(ethylene glycol) tethered with specific integrin-binding small molecules and have characterized their resulting effect on the MSC transcriptome when compared with 2D cultured and untethered 3D hydrogel cultured MSCs. The 3D culture systems resulted in alterations in the MSC transcriptome, as is evident by the differential expression of genes related to extracellular matrix production, glycosylation, metabolism, signal transduction, gene epigenetic regulation, and development. For example, genes important for osteogenic differentiation were upregulated in 3D hydrogel cultures, and the expression of these genes could be partially suppressed by tethering an integrin-binding RGD peptide within the hydrogel. Highlighting the utility of tunable hydrogels, when applied to ex vivo human wounds the RGD-tethered hydrogel was able to support wound re-epithelialization, possibly due to its ability to increase PDGF expression and decrease IL-6 expression. These results will aid in future hydrogel design for a broad range of applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。