Mechanical and Functional Responses in Astrocytes under Alternating Deformation Modes Using Magneto-Active Substrates

利用磁活性基质研究星形胶质细胞在交替变形模式下的机械和功能响应

阅读:9
作者:Clara Gomez-Cruz, Miguel Fernandez-de la Torre, Dariusz Lachowski, Martin Prados-de-Haro, Armando E Del Río Hernández, Gertrudis Perea, Arrate Muñoz-Barrutia, Daniel Garcia-Gonzalez

Abstract

This work introduces NeoMag, a system designed to enhance cell mechanics assays in substrate deformation studies. NeoMag uses multidomain magneto-active materials to mechanically actuate the substrate, transmitting reversible mechanical cues to cells. The system boasts full flexibility in alternating loading substrate deformation modes, seamlessly adapting to both upright and inverted microscopes. The multidomain substrates facilitate mechanobiology assays on 2D and 3D cultures. The integration of the system with nanoindenters allows for precise evaluation of cellular mechanical properties under varying substrate deformation modes. The system is used to study the impact of substrate deformation on astrocytes, simulating mechanical conditions akin to traumatic brain injury and ischemic stroke. The results reveal local heterogeneous changes in astrocyte stiffness, influenced by the orientation of subcellular regions relative to substrate strain. These stiffness variations, exceeding 50% in stiffening and softening, and local deformations significantly alter calcium dynamics. Furthermore, sustained deformations induce actin network reorganization and activate Piezo1 channels, leading to an initial increase followed by a long-term inhibition of calcium events. Conversely, fast and dynamic deformations transiently activate Piezo1 channels and disrupt the actin network, causing long-term cell softening. These findings unveil mechanical and functional alterations in astrocytes during substrate deformation, illustrating the multiple opportunities this technology offers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。