Targeted Intraceptor Nanoparticle for Neovascular Macular Degeneration: Preclinical Dose Optimization and Toxicology Assessment

针对新生血管性黄斑变性的靶向受体纳米粒子:临床前剂量优化和毒理学评估

阅读:7
作者:Xiaohui Zhang, Austin Bohner, Sai Bhuvanagiri, Hironori Uehara, Arun Kumar Upadhyay, Lyska L Emerson, Sailaja Bondalapati, Santosh Kumar Muddana, Daniel Fang, Miaoling Li, Zoya Sandhu, Alya Hussain, Lara S Carroll, Michelle Tiem, Bonnie Archer, Uday Kompella, Rajkumar Patil, Balamurali K Ambati

Abstract

Neovascular age-related macular degeneration (AMD) is treated with anti-VEGF intravitreal injections, which can cause geographic atrophy, infection, and retinal fibrosis. To minimize these toxicities, we developed a nanoparticle delivery system for recombinant Flt23k intraceptor plasmid (RGD.Flt23k.NP) to suppress VEGF intracellularly within choroidal neovascular (CNV) lesions in a laser-induced CNV mouse model through intravenous administration. In the current study, we examined the efficacy and safety of RGD.Flt23k.NP in mice. The effect of various doses was determined using fluorescein angiography and optical coherence tomography to evaluate CNV leakage and volume. Efficacy was determined by the rate of inhibition of CNV volume at 2 weeks post-treatment. RGD.Flt23k.NP had peak efficacy at a dose range of 30-60 μg pFlt23k/mouse. Using the lower dose (30 μg pFlt23k/mouse), RGD.Flt23k.NP safety was determined both in single-dose groups and in repeat-dose (three times) groups by measuring body weight, organ weight, hemoglobin levels, complement C3 levels, and histological changes in vital organs. Neither toxicity nor inflammation from RGD.Flt23k.NP was detected. No side effect was detected on visual function. Thus, systemic RGD.Flt23k.NP may be an alternative to standard intravitreal anti-VEGF therapy for the treatment of neovascular AMD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。