Direct interaction of DNMT inhibitors to PrPC suppresses pathogenic process of prion

DNMT 抑制剂与 PrPC 直接相互作用抑制朊病毒的致病过程

阅读:7
作者:Dae-Hwan Kim, Chunyan Ren, Chongsuk Ryou, Jiaojie Li

Abstract

The conversion of the normal cellular prion protein (PrPC) to the misfolded pathogenic scrapie prion protein (PrPSc) is the biochemical hallmark of prion replication. So far, various chemical compounds that inhibit this conformational conversion have been identified. Here, we report the novel anti-prion activity of SGI-1027 and its meta/meta analogue (M/M), previously known only as potent inhibitors of DNA methyltransferases (DNMTs). These compounds effectively decreased the level of PrPSc in cultured cells with permanent prion infection, without affecting PrPC at the transcriptional or translational levels. Furthermore, SGI-1027 prevented effective prion infection of the cells. In a PrP aggregation assay, both SGI-1027 and M/M blocked the formation of misfolded PrP aggregates, implying that binding of these compounds hinders the PrP conversion process. A series of binding and docking analyses demonstrated that both SGI-1027 and M/M directly interacted with the C-terminal globular domain of PrPC, but only SGI-1027 bound to a specific region of PrPC with high affinity, which correlates with its potent anti-prion efficacy. Therefore, we report SGI-1027 and related compounds as a novel class of potential anti-prion agents that preferentially function through direct interaction with PrPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。