Proteomics-Based Identification and Analysis of Proteins Associated with Helicobacter pylori in Gastric Cancer

基于蛋白质组学的胃癌幽门螺杆菌相关蛋白的识别与分析

阅读:5
作者:Jianjiang Zhou, Wenling Wang, Yuan Xie, Yan Zhao, Xian Chen, Wenjie Xu, Yan Wang, Zhizhong Guan

Abstract

Helicobacter pylori (H. pylori) is a spiral-shaped Gram-negative bacterium that causes the most common chronic infection in the human stomach. Approximately 1%-3% of infected individuals develop gastric cancer. However, the mechanisms by which H. pylori induces gastric cancer are not completely understood. The available evidence indicates a strong link between the virulence factor of H. pylori, cytotoxin-associated gene A (CagA), and gastric cancer. To further characterize H. pylori virulence, we established three cell lines by infecting the gastric cancer cell lines SGC-7901 and AGS with cagA+ H. pylori and transfecting SGC-7901 with a vector carrying the full-length cagA gene. We detected 135 differently expressed proteins from the three cell lines using proteome technology, and 10 differential proteins common to the three cell lines were selected and identified by LC-MS/MS as well as verified by western blot: β-actin, L-lactate dehydrogenase (LDH), dihydrolipoamide dehydrogenase (DLD), pre-mRNA-processing factor 19 homolog (PRPF19), ATP synthase, calmodulin (CaM), p64 CLCP, Ran-specific GTPase-activating protein (RanGAP), P43 and calreticulin. Detection of the expression of these proteins and genes encoding these proteins in human gastric cancer tissues by real-time PCR (RT-qPCR) and western blot revealed that the expression of β-ACTIN, LDH, DLD, PRPF19 and CaM genes were up-regulated and RanGAP was down-regulated in gastric cancer tissues and/or metastatic lymph nodes compared to peri-cancerous tissues. High gene expression was observed for H. pylori infection in gastric cancer tissues. Furthermore, the LDH, DLD and CaM genes were demethylated at the promoter -2325, -1885 and -276 sites, respectively, and the RanGAP gene was highly methylated at the promoter -570 and -170 sites in H. pylori-infected and cagA-overexpressing cells. These results provide new insights into the molecular pathogenesis and treatment targets for gastric cancer with H. pylori infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。