P21-Activated Kinase 4 Pak4 Maintains Embryonic Stem Cell Pluripotency via Akt Activation

P21 激活激酶 4 Pak4 通过 Akt 激活维持胚胎干细胞多能性

阅读:7
作者:Fangyuan Cheng, Mingyue Li, Rick Francis Thorne, Guangzhi Liu, Yuwei Zhang, Mian Wu, Lianxin Liu

Abstract

Exploiting the pluripotent properties of embryonic stem cells (ESCs) holds great promise for regenerative medicine. Nevertheless, directing ESC differentiation into specialized cell lineages requires intricate control governed by both intrinsic and extrinsic factors along with the actions of specific signaling networks. Here, we reveal the involvement of the p21-activated kinase 4 (Pak4), a serine/threonine kinase, in sustaining murine ESC (mESC) pluripotency. Pak4 is highly expressed in R1 ESC cells compared with embryonic fibroblast cells and its expression is progressively decreased during differentiation. Manipulations using knockdown and overexpression demonstrated a positive relationship between Pak4 expression and the clonogenic potential of mESCs. Moreover, ectopic Pak4 expression increases reprogramming efficiency of Oct4-Klf4-Sox2-Myc-induced pluripotent stem cells (iPSCs) whereas Pak4-knockdown iPSCs were largely incapable of generating teratomas containing mesodermal, ectodermal and endodermal tissues, indicative of a failure in differentiation. We further establish that Pak4 expression in mESCs is transcriptionally driven by the core pluripotency factor Nanog which recognizes specific binding motifs in the Pak4 proximal promoter region. In turn, the increased levels of Pak4 in mESCs fundamentally act as an upstream activator of the Akt pathway. Pak4 directly binds to and phosphorylates Akt at Ser473 with the resulting Akt activation shown to attenuate downstream GSK3β signaling. Thus, our findings indicate that the Nanog-Pak4-Akt signaling axis is essential for maintaining mESC self-renewal potential with further importance shown during somatic cell reprogramming where Pak4 appears indispensable for multi-lineage specification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。