Ursolic acid enhances the effect of exercise training on vascular aging by reducing oxidative stress in aged type 2 diabetic rats

熊果酸通过降低老年 2 型糖尿病大鼠的氧化应激增强运动训练对血管老化的影响

阅读:6
作者:Masume Kazemi Pordanjani, Ebrahim Banitalebi, Mehrdad Roghani, Roohullah Hemmati

Abstract

Ursolic acid (UA) mediates the vasorelaxant activity via nitric oxide (NO) release, and upregulation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) in disease conditions with increased oxidative stress (OS). The present study aimed to reflect on the impact of 8 weeks of a combination of UA supplementation and resistance/endurance training in old male Wistar rats having a high-fat diet and/or low-dose streptozotocin-induced type 2 diabetes (HFD/STZ-induced T2D), with an emphasis on Sirtuin 1 (SIRT1)-endothelial nitric oxide synthase (eNOS) axis and OS indices in their aortic tissues. A total number of56 21-month-old male Wistar rats with HFD/STZ-induced T2D were randomized into seven groups (n = eight animals per group): (1) sedentary old nondiabetic (Control [C]); (2) sedentary HFD/STZ-induced T2D (Diabetic [D]); (3) sedentary HFD/STZ-induced T2D plus UA (Diabetic + Ursolic Acid [DU]); (4) endurance-trained HFD/STZ-induced T2D (Diabetic + Endurance Training [DE]); (5) resistance-trained HFD/STZ-induced T2D (Diabetic + Resistance Training [DR]); (6) endurance-trained HFD/STZ-induced T2D plus UA (Diabetic + Endurance Training + Ursolic Acid [DEU]); and (7) resistance-trained STZ-diabetic plus UA (Diabetic + Resistance Training + Ursolic Acid [DRU]) rats. The ladder-based resistance training group performed the ladder resistance training at 60% of the maximum voluntary carrying capacity (MVCC), 14-20 climbs in each session, with a one-min rest between each two trials, 5 days a week. The treadmill-based endurance exercise training protocol consisted of repeated bouts of high- and low-intensity training with 60-75% maximal running speed and 30%-40% maximal running speed in the course of 8 weeks, respectively. The animals in the supplement groups also took 500 mg of UA/kg of high-fat diet/day, resulting in a daily UA intake of approximately 250 mg UA per kg of body weight rat/day. The resistance/endurance training plus the UA consumption could partially reverse the levels of malondialdehyde (MDA), nitric oxide (NO), as well as total antioxidant capacity (TAC). It was concluded that oral 0.5% UA supplementation can prevent vascular aging biomarkers in a HFD/STZ-induced T2D model. Further studies are also required to clarify how chronic consumption of UA with/without training protocols reverses vascular aging process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。