Neuroprotective role of delta opioid receptors in hypoxic preconditioning

δ 阿片受体在缺氧预处理中的神经保护作用

阅读:5
作者:Şevin Güney, Sibel Dinçer, Güleser Göktaş, Gülnur Take-Kaplanoğlu

Aim

The purpose of the present study was to explore the neuroprotective role of delta opioid receptors (DOR) in the rat cortex in hypoxic preconditioning. Materials and

Conclusions

These results suggest that cortical cells are resistant to apoptosis via increased expression of Bcl-2 and decreased immunoreactivity of caspase-3 in the cortex, and that DOR is involved in neuroprotection induced by hypoxic preconditioning via the caspase-3 pathway in cortical neurons.

Methods

Rats were randomly divided into 8 groups: control (C), sham (S), hypoxic preconditioning (PC), severe hypoxia (SH), PC + SH, PC + SH + Saline (PS), PC + SH + DPDPE (DPDPE, selective DOR agonist), PC + SH + NT (NT, Naltrindole, selective DOR antagonist). Drugs were administered intracerebroventrically. Twenty four h after the end of 3 consecutive days of PC (10% O2, 2 h/day), the rats were subjected to severe hypoxia (7% O2 for 3 h). Bcl-2 and cyt-c were measured by western blot, and caspase-3 was observed immunohistochemically.

Results

Bcl-2 expressions in the PC group were higher than in control, SH, and PC + SH groups. Even though there were no significant differences between the groups in terms of cyt-c levels, caspase-3 immunoreactivity of cortical neurons and glial cells in the severe hypoxia and NT groups were higher than in the control, sham, and hypoxic preconditioning groups. DPDPE administration diminished caspase-3 immunoreactivity compared with all of the severe hypoxia groups. Conclusions: These results suggest that cortical cells are resistant to apoptosis via increased expression of Bcl-2 and decreased immunoreactivity of caspase-3 in the cortex, and that DOR is involved in neuroprotection induced by hypoxic preconditioning via the caspase-3 pathway in cortical neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。