A novel hybrid soft computing optimization framework for dynamic economic dispatch problem of complex non-convex contiguous constrained machines

复杂非凸连续约束机器动态经济调度问题的新型混合软计算优化框架

阅读:7
作者:Ijaz Ahmed, Um-E-Habiba Alvi, Abdul Basit, Tayyaba Khursheed, Alwena Alvi, Keum-Shik Hong, Muhammad Rehan

Abstract

The reformations of the electrical power sector have resulted in very dynamic and competitive market that has changed many elements of the power industry. Excessive demand of energy, depleting the fossil fuel reserves of planet and releasing the toxic air pollutant, has been causing harm to earth habitats. In this new situation, insufficiency of energy supplies, rising power generating costs, high capital cost of renewable energy equipment, environmental concerns of wind power turbines, and ever-increasing demand for electrical energy need efficient economic dispatch. The objective function in practical economic dispatch (ED) problem is nonlinear and non-convex, with restricted equality and inequality constraints, and traditional optimization methods are incapable of resolving such non-convex problems. Over the recent decade, meta-heuristic optimization approaches have acquired enormous reputation for obtaining a solution strategy for such types of ED issues. In this paper, a novel soft computing optimization technique is proposed for solving the dynamic economic dispatch problem (DEDP) of complex non-convex machines with several constraints. Our premeditated framework employs the genetic algorithm (GA) as an initial optimizer and sequential quadratic programming (SQP) for the fine tuning of the pre-optimized run of GA. The simulation analysis of GA-SQP performs well by acquiring less computational cost and finite time of execution, while providing optimal generation of powers according to the targeted power demand and load, whereas subject to valve point loading effect (VPLE) and multiple fueling option (MFO) constraints. The adequacy of the presented strategy concerning accuracy, convergence as well as reliability is verified by employing it on ten benchmark case studies, including non-convex IEEE bus system at the same time also considering VPLE of thermal power plants. The potency of designed optimization seems more robust with fast convergence rate while evaluating the hard bounded DEDP. Our suggested hybrid method GA-SQP converges to achieve the best optimal solution in a confined environment in a limited number of simulations. The simulation results demonstrate applicability and adequacy of the given hybrid schemes over conventional methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。