Partially replacing cornstarch in a high-concentrate diet with sucrose inhibited the ruminal trans-10 biohydrogenation pathway in vitro by changing populations of specific bacteria

用蔗糖部分替代高浓缩饮食中的玉米淀粉,通过改变特定细菌的数量,抑制了体外瘤胃反式-10 生物氢化途径

阅读:4
作者:Xiaoqin Sun, Yaping Wang, Bo Chen, Xin Zhao

Background

The positive influence of replacing dietary starch with sugar on milk fat production has been proposed to be partially attributed to the inhibition of the rumen trans-10 biohydrogenation pathway. However, whether and how sucrose inhibits the rumen trans-10 biohydrogenation pathway remains elusive.

Conclusions

These results indicate that replacing starch in a high-concentrate diet with sucrose increased butyrate production and inhibited the rumen trans-10 biohydrogenation pathway, which was at least partially due to increased abundance of Butyrivibrio fibrisolvens and decreased abundance of Megasphaera elsdenii.

Results

A batch in vitro incubation system was used to evaluate effects of replacing cornstarch in a high-concentrate diet (forage to concentrate ratio = 40:60) with 0 (control), 3, 6 and 9 % of sucrose on rumen fermentation pattern, fatty acid (FA) biohydrogenation pathways and bacterial populations relating to trans-11 to trans-10 biohydrogenation pathways. Replacing dietary cornstarch with sucrose did not alter rumen pH or concentrations of total volatile fatty acids (VFA) in comparison with the control but significantly influenced the profiles of individual VFA. The molar proportions of butyrate and valerate were linearly increased, while that of acetate was quadratically decreased and those of propionate, isobutyrate and isovalerate were linearly decreased with increasing concentrations of sucrose in the diet. Furthermore, replacing cornstarch with sucrose led to a linear decrease in C18:1 trans-10, linear increases in the proportions of C18:1 trans-11, C18:2n-6 and the ratio of trans-11 to trans-10, and linear decreases in biohydrogenation of C18:2n-6 and C18:3n-3. The abundance of Butyrivibrio fibrisolvens, a butyrate and CLA cis-9, trans-11 producer, was increased with the increasing inclusion of sucrose in the diet, while the population of Megasphaera elsdenii, a CLA trans-10, cis-12 producer, was significantly decreased by all levels of sucrose replacements. Conclusions: These results indicate that replacing starch in a high-concentrate diet with sucrose increased butyrate production and inhibited the rumen trans-10 biohydrogenation pathway, which was at least partially due to increased abundance of Butyrivibrio fibrisolvens and decreased abundance of Megasphaera elsdenii.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。