Systemic or Forebrain Neuron-Specific Deficiency of Geranylgeranyltransferase-1 Impairs Synaptic Plasticity and Reduces Dendritic Spine Density

系统性或前脑神经元特异性的香叶基香叶基转移酶-1 缺乏会损害突触可塑性并降低树突棘密度

阅读:5
作者:David Hottman, Shaowu Cheng, Andrea Gram, Kyle LeBlanc, Li-Lian Yuan, Ling Li

Abstract

Isoprenoids and prenylated proteins regulate a variety of cellular functions, including neurite growth and synaptic plasticity. Importantly, they are implicated in the pathogenesis of several diseases, including Alzheimer's disease (AD). Recently, we have shown that two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), have differential effects in a mouse model of AD. Haplodeficiency of either FT or GGT attenuates amyloid-β deposition and neuroinflammation but only reduction in FT rescues cognitive function. The current study aimed to elucidate the potential mechanisms that may account for the lack of cognitive benefit in GGT-haplodeficient mice, despite attenuated neuropathology. The results showed that the magnitude of long-term potentiation (LTP) was markedly suppressed in hippocampal slices from GGT-haplodeficient mice. Consistent with the synaptic dysfunction, there was a significant decrease in cortical spine density and cognitive function in GGT-haplodeficient mice. To further study the neuron-specific effects of GGT deficiency, we generated conditional forebrain neuron-specific GGT-knockout (GGTf/fCre+) mice using a Cre/LoxP system under the CAMKIIα promoter. We found that both the magnitude of hippocampal LTP and the dendritic spine density of cortical neurons were decreased in GGTf/fCre+ mice compared with GGTf/fCre- mice. Immunoblot analyses of cerebral lysate showed a significant reduction in cell membrane-associated (geranylgeranylated) Rac1 and RhoA but not (farnesylated) H-Ras, in GGTf/fCre+ mice, suggesting that insufficient geranylgeranylation of the Rho family of small GTPases may underlie the detrimental effects of GGT deficiency. These findings reinforce the critical role of GGT in maintaining spine structure and synaptic/cognitive function in development and in the mature brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。