Modeling dysbiosis of human NASH in mice: Loss of gut microbiome diversity and overgrowth of Erysipelotrichales

在小鼠中模拟人类 NASH 的菌群失调:肠道微生物群多样性丧失和丹毒丝菌过度生长

阅读:5
作者:James K Carter, Dipankar Bhattacharya, Joshua N Borgerding, M Isabel Fiel, Jeremiah J Faith, Scott L Friedman

Aim

Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) that is responsible for a growing fraction of cirrhosis and liver cancer cases worldwide. Changes in the gut microbiome have been implicated in NASH pathogenesis, but the lack of suitable murine models has been a barrier to progress. We have therefore characterized the microbiome in a well-validated murine NASH model to establish its value in modeling human disease.

Conclusions

We have established a valuable model to study the role of gut microbes in NASH, enabling us to identify a new NASH gut microbiome signature.

Methods

The composition of intestinal microbiota was monitored in mice on a 12- or 24-week NASH protocol consisting of high fat, high sugar Western Diet (WD) plus once weekly i.p injection of low-dose CCl4. Additional mice were subjected to WD-only or CCl4-only conditions to assess the independent effect of these variables on the microbiome.

Results

There was substantial remodeling of the intestinal microbiome in NASH mice, characterized by declines in both species diversity and bacterial abundance. Based on changes to beta diversity, microbiota from NASH mice clustered separately from controls in principal coordinate analyses. A comparison between WD-only and CCl4-only controls with the NASH model identified WD as the primary driver of early changes to the microbiome, resulting in loss of diversity within the 1st week. A NASH signature emerged progressively at weeks 6 and 12, including, most notably, a reproducible bloom of the Firmicute order Erysipelotrichales. Conclusions: We have established a valuable model to study the role of gut microbes in NASH, enabling us to identify a new NASH gut microbiome signature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。