The involvement of oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation in acrylamide-induced neurotoxicity in C57/BL6 mice

氧化应激、神经元损伤、神经传递障碍和神经炎症与丙烯酰胺诱导的 C57/BL6 小鼠神经毒性的关系

阅读:6
作者:Mengyao Zhao, Linlin Deng, Xiaoxuan Lu, Liqiang Fan, Yang Zhu, Liming Zhao

Abstract

Acrylamide (ACR) is a typical environmental contaminant, presenting potential health hazards that have been attracting increasing attention. Its neurotoxicity is known to cause significant damage to health. However, the mechanisms of ACR-induced neurotoxicity require further clarification. This study uses a mouse model to explore how ACR-induced oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation mutually contribute to neurotoxicity. A distinct increase in the cellular reactive oxygen species (ROS) levels, malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) content and a significant decrease in the glutathione (GSH) content after ACR exposure were indicative of oxidative stress. Moreover, ACR caused neurological defects associated with gait abnormality and neuronal loss while suppressing the acetylcholine (ACh) and dopamine (DA) levels and increasing the protein expression of α-synuclein (α-syn), further inhibiting cholinergic and dopaminergic neuronal function. Additionally, ACR treatment caused an inflammatory response via nuclear factor-kappa B (NF-κB) activation and increased the protein expression of NOD-like receptor protein-3 (NLRP3), consequently activating the NLRP3 inflammasome constituents, including cysteinyl aspartate specific proteinase 1 (Caspase-1), apoptosis-associated speck-like protein containing CARD (ASC), N domain gasdermin D (N-GSDMD), interleukin-1β (IL-1β), and IL-18. The results revealed the underlying molecular mechanism of ACR-induced neurotoxicity via oxidative stress, neurotransmission impairment, and neuroinflammation-related signal cascade. This information will further improve the development of an alternative pathway strategy for investigating the risk posed by ACR. The hypothetical mechanism of ACR-induced neurotoxicity in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。