Beneficial effects of Nrf2 overexpression in a mouse model of Alexander disease

Nrf2 过表达对亚历山大病小鼠模型的有益影响

阅读:7
作者:Christine M LaPash Daniels, Elizabeth V Austin, Danica E Rockney, Elizabeth M Jacka, Tracy L Hagemann, Delinda A Johnson, Jeffrey A Johnson, Albee Messing

Abstract

Alexander disease is a fatal neurodegenerative disease caused by dominant mutations in glial fibrillary acidic protein (GFAP). The disease is characterized by protein inclusions called Rosenthal fibers within astrocyte cell bodies and processes, and an antioxidant response mediated by the transcription factor Nrf2. We sought to test whether further elevation of Nrf2 would be beneficial in a mouse model of Alexander disease. Forcing overexpression of Nrf2 in astrocytes of R236H GFAP mutant mice decreased GFAP protein in all brain regions examined (olfactory bulb, hippocampus, cerebral cortex, brainstem, cerebellum, and spinal cord) and decreased Rosenthal fibers in olfactory bulb, hippocampus, corpus callosum, and brainstem. Nrf2 overexpression also restored body weights of R236H mice to near wild-type levels. Nrf2 regulates several genes involved in homeostasis of the antioxidant molecule glutathione, and the neuroprotective effects of Nrf2 in other neurological disorders may reflect restoration of glutathione to normal levels. However, glutathione levels in R236H mice were not decreased. Nrf2 overexpression did not change glutathione levels or ratio of reduced to oxidized glutathione (indicative of oxidative stress) in olfactory bulb, where Nrf2 dramatically reduced GFAP. Depletion of glutathione through knock-out of the GCLM (glutamate-cysteine ligase modifier subunit) also did not affect GFAP levels or body weight of R236H mice. These data suggest that the beneficial effects of Nrf2 are not mediated through glutathione.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。