Live-cell imaging evidence for the ciliary transport of rod photoreceptor opsin by heterotrimeric kinesin-2

异三聚体驱动蛋白-2 纤毛运输杆状光感受器视蛋白的活细胞成像证据

阅读:5
作者:Deepti Trivedi, Emilie Colin, Carrie M Louie, David S Williams

Abstract

Primary cilia detect extracellular signals through membrane receptors and channels. The outer segment of a vertebrate photoreceptor cell represents the most elaborate of all primary cilia, containing extraordinarily large amounts of the visual receptor protein, opsin. Because of its high abundance, opsin represents a potential model system for the study of ciliary membrane receptors, including their transport. Here, we have analyzed the movement of ciliary opsin to test whether the highly conserved intraflagellar transport (IFT), as driven by heterotrimeric kinesin-2, is required. Results show that opsin can enter and move along the primary cilium of a nonphotoreceptor cell (an hTERT-RPE1 epithelial cell), suggesting that it can co-opt the basic anterograde motor system of cilia. Fluorescence recovery after photobleaching analysis of cilia of hTERT-RPE1 cells showed that the movement of ciliary opsin was comparable to that of the IFT protein, IFT88. Moreover, the movement of opsin in these cilia, as well as in cilia of mouse rod photoreceptor cells, was reduced significantly when KIF3A, the obligate motor subunit of heterotrimeric kinesin-2, was deficient. These studies therefore provide evidence from live-cell analysis that the conserved heterotrimeric kinesin-2 is required for the normal transport of opsin along the ciliary plasma membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。