Mechanism and role of the intra-axonal Calreticulin translation in response to axonal injury

轴突内钙网蛋白翻译在轴突损伤响应中的机制和作用

阅读:7
作者:Almudena Pacheco, Tanuja T Merianda, Jeffery L Twiss, Gianluca Gallo

Abstract

Following injury, sensory axons locally translate mRNAs that encode proteins needed for the response to injury, locally and through retrograde signaling, and for regeneration. In this study, we addressed the mechanism and role of axotomy-induced intra-axonal translation of the ER chaperone Calreticulin. In vivo peripheral nerve injury increased Calreticulin levels in sensory axons. Using an in vitro model system of sensory neurons amenable to mechanistic dissection we provide evidence that axotomy induces local translation of Calreticulin through PERK (protein kinase RNA-like endoplasmic reticulum kinase) mediated phosphorylation of eIF2α by a mechanism that requires both 5' and 3'UTRs (untranslated regions) elements in Calreticulin mRNA. ShRNA mediated depletion of Calreticulin or inhibition of PERK signaling increased axon retraction following axotomy. In contrast, expression of axonally targeted, but not somatically restricted, Calreticulin mRNA decreased retraction and promoted axon regeneration following axotomy in vitro. Collectively, these data indicate that the intra-axonal translation of Calreticulin in response to axotomy serves to minimize the ensuing retraction, and overexpression of axonally targeted Calreticulin mRNA promotes axon regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。