Conclusions
We believe machine learning tools will be useful for the early prediction of AMD and for the development of relevant intervention strategies.
Methods
This study included a total of 202 subjects, comprising 82 AMD patients and 120 control subjects. Sixty-six single-nucleotide polymorphisms (SNPs) were identified using the MassArray assay. Considering 14 independent clinical variables as well as SNPs, four predictive models were established in the training set and evaluated by the confusion matrix, area under the receiver operating characteristic (ROC) curve (AUROC). The difference distributions of the 14 independent clinical features between the AMD and control groups were tested using the chi-squared test. Age and diabetes were adjusted using logistic regression analysis and the "genomic-control" method was used for multiple testing correction.
Results
Three SNPs (rs10490924, OR = 1.686, genomic-control corrected p-value (GC) = 0.030; rs2338104, OR = 1.794, GC = 0.025 and rs1864163, OR = 2.125, GC = 0.038) were significant risk factors for AMD development. In the training set, four models obtained AUROC values above 0.72. Conclusions: We believe machine learning tools will be useful for the early prediction of AMD and for the development of relevant intervention strategies.
