Development of molecular approach based on PCR assay for detection of histamine producing bacteria

基于 PCR 检测产生组胺的细菌的分子方法的开发

阅读:7
作者:Karn Wongsariya, Nuntavan Bunyapraphatsara, Montri Yasawong, Mullika Traidej Chomnawang

Abstract

Histamine fish poisoning becomes highly concern not only in public health but also economic aspect. Histamine is produced from histidine in fish muscles by bacterial decarboxylase enzyme. Several techniques have been developed to determine the level of histamine in fish and their products but the effective method for detecting histamine producing bacteria is still required. This study was attempted to detect histamine producing bacteria by newly developed PCR condition. Histamine producing bacteria were isolated from scombroid fish and determined the ability to produce histamine of isolated bacteria by biochemical and TLC assays. PCR method was developed to target the histidine decarboxylase gene (hdc). The result showed that fifteen histamine producing bacterial isolates and three standard strains produced an amplicon at the expected size of 571 bp after amplified by PCR using Hdc_2F/2R primers. Fifteen isolates of histamine producing bacteria were classified as M. morganii, E. aerogenes, and A. baumannii. The lowest detection levels of M. morganii and E. aerogenes were 10(2) and 10(5) Cfu/mL in culture media and 10(3) and 10(6) Cfu/mL in fish homogenates, respectively. The limit of detection by this method was clearly shown to be sensitive because the primers could detect the presence of M. morganii and E. aerogenes before the histamine level reached the regulation level at 50 ppm. Therefore, this PCR method exhibited the potential efficiency for detecting the hdc gene from histamine producing bacteria and could be used to prevent the proliferation of histamine producing bacteria in fish and fish products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。